
Dodo
www.parametricism.co.uk

1

DODO

www.parametricism.co.uk

Dodo
www.parametricism.co.uk

2

1. Introduction
Dodo is a Grasshopper plugin in which I’d like to collect tools matching
my interests. They are mostly research oriented and their application in
the design, AEC, automotive industries might not be straightforward but I
believe that by giving everyone the possibility to play with them good ideas
and implementations will surely arise :).

My main fields of interests are optimization, data analysis and visualization,
mesh manipulation, structural analysis and many others that eventually
you will discover by seeing the implementations I will hopefully be able to
add to this plugin if I manage to have enough time.

Also, if you have any idea to implement, suggestion or you want to report
a bug, please contact me at:
lorenzogreco@parametricism.co.uk

Figure 1
Dodo’s components

www.parametricism.co.uk
mailto:lorenzogreco@parametricism.co.uk

Dodo
www.parametricism.co.uk

3

Index

Introduction
Non-Linear Optimization
Marching cubes/Tetrahedra
Artificial Neural Network
 ANN - Supervised Training
 ANN - Unsupervised Training
Mesh Tools
kD-Tree
Graph
Fields
Other tools
References

2
4
6
8
9
12
16
18
22
24
26
28

1.
2.
3.
4.

6.
7.
8.
9.

10.
11.

www.parametricism.co.uk

Dodo
www.parametricism.co.uk

4

2. NL Opt
Non-linear optimization differs from linear optimization for the function it
tries to minimize is non linear and/or the constraints it is subject to, which
is the case for almost several engineering application. NL-opt makes use
of gradient free algorithms to try to minimize the target function and in
order to do that it needs to calculate an approximate value of the gradient
for a given point. Once this is done, it tries to move to a neighbour point
according to the interpretation of the gradient given by the specific engine
criteria.

This plugin uses the .NET implementations of the famous NLOpt library
that you can find here: http://ab-initio.mit.edu/wiki/index.php/NLopt,
whilst the .NET implementation is here: https://github.com/roryclune/
NLOptDotNet.
Due to the difficult interoperability of the dll, some engines are missings
and non linear inequality constraints are harder to fulfill.

The GH component you need is the one in the picture and works similarly
to Galapagos, Goat and Octopus, which I find very convenient.
Here’s how to use it:

• Connect the input to any number of sliders and/or gene pools you want
and also to a boolean - if the algorithm allows it - and the objective on
the number you want to minimize/massimize.

• Double click on the component.
• Set the parameters.
• Click on RUN.

Figure 2
Non-Linear Optimization

component

Figure 3
Optimization of a func-

tion with 3 unknowns and
a constraint

www.parametricism.co.uk
http://ab-initio.mit.edu/wiki/index.php/NLopt
https://github.com/roryclune/NLOptDotNet
https://github.com/roryclune/NLOptDotNet

Dodo
www.parametricism.co.uk

5

A chart showing the goal trend is shown. You will notice that although the
global trend is downwards there are spikes upwards. This is normal and the
reason is that at each step the engine needs to compute the neighbouring
points in order to calculate the local gradient. Of course these points can
have (and most probably will) a higher value, hence the spikes.

Figure 4
These three charts show
the trend of an optimiza-
tion process in time.

Name Can use bool
GN_DIRECT
GN_DIRECT_L
GN_DIRECT_L_RAND
GN_DIRECT_NOSCAL
GN_ORIG_DIRECT ✓
GN_ORIG_DIRECT_L ✓
LN_PRAXIS
GN_CRS2_LM
GN_MLSL
GD_MLSL
GN_MLSL_LDS
GD_MLSL_LDS
LD_MMA ✓
LN_COBYLA ✓
LN_NEWUOA
LN_NEWUOA_BOUND
LN_NELDERMEAD
LN_SBPLX
LN_AUGLAG ✓
LD_AUGLAG ✓
LN_AUGLAG_EQ ✓
LD_AUGLAG_EQ ✓
LN_BOBYQA ✓
AUGLAG ✓
AUGLAG_EQ ✓
G_MLSL ✓
G_MLSL_LDS ✓
LD_SLSQP ✓

Due to the characteristics
of the NLOpt library and
its implementation for
GH, some algorithms
could not be implemented
and not all of them
support restrained
solutions. Please check
these algorithms on the
table on the right.

In bold some of the most
common.

Table 1
Non-Linear optimization
engines implemented in
Dodo. In Bold some of the
most common

www.parametricism.co.uk

Dodo
www.parametricism.co.uk

6

An isosurface is the collection of points in space mapping to the same val-
ue. In a 2D domain the isosurface is an isoline and an example of them
can be found in topographical maps where mountains and depression are
represented as closed curves each one indicating a different height.
Isosurfaces are the equivalent of isocurves but are the result of a 3D do-

3. Marching Cubes/Tetrahedra

Figure 5
xample of GH definition
for marching tetrahedra.

A cylinder is disturbed by
a point field

www.parametricism.co.uk

Dodo
www.parametricism.co.uk

7

main where each point in space has a certain value. They connect all these
points together thus forming one or multiple surfaces.

One of the main methods to produce these isosurfaces is using Marching
Cubes or theory that generated from that one. In this plugin Marching
Tetrahedra have been used since they can manage better singular points.
Among the new implementations there are some making use of derivatives
of the scalar field given, but unfortunately the grasshopper Field compo-
nent does not calculate derivatives. Maybe in the future I will implement
a new customized field component but for the time being I thought that
using the already available tools is best.

Generating Isomesh with Dodo is pretty straightforward. First you need
to generate the scalar field using the field components GH has, writing an
analytical formula or both. In the example below a field is created using
random points with random charges and is summed to the equation of the
Barth Sextic. Just plug the field and the equation into the Voxel generator
and set a value for the sampling of the scalar field. Then plug the voxel
component into the Mesh generator and set the isovalue for the mesh.
Enjoy!

In the Isomesh component you can switch from marching tetrahedra
(true) marching cubes (false).

Figure 6
Voxel generator (top) and
Isomesh generator (bot-
tom)

Figure 7
Example of GH definition
for marching tetrahedra

www.parametricism.co.uk

Dodo
www.parametricism.co.uk

8

4. Artificial Neural Network (ANN)

Figure 8
Scheme of an Artificial
Neural Network with 1

input layer, 1 hidden layer
with 4 neurons and 1 out-

put layer. (wikipedia)

More info:
https://en.wikipedia.org/

wiki/Artificial_neural_net-
work

Artificial Neural Networks can date back to the second half of 1900 and take
their name by their similarity with neuron interconnections in brain. ANN
are composed by a series of layer each containing a number of neurons,
each of which connects to its peers in the layer before and after, as shown

in the following picture.
The example in the picture
shows an ANN mapping
data from a 3D domain
to a 2D on by making use
of a hidden layer. Hidden
layers are those which are
not directly connected
with the input data nor
with the output. An ANN
can have any number
of neurons and hidden
layer which can bring
to completely different
results as well as increased
computational time.
Neurons’ connections are
drawn as arrow pointing
in the direction in which
the data flows. Usually
neurons perform very
basic operations and

they are connected through value functions which are the targets ANNs
optimize in order to fit the input data to the expected results.
The field of application of these ANN is data fitting, prediction and
classification and their implementation is treated below.

These mentioned are not the only applications though as ANN can be used
with unsupervised learning as Self-Organizing Map (SOM)

Link to the .dll:
http://www.codeproject.

com/Articles/16447/
Neural-Networks-on-C.

www.parametricism.co.uk

Dodo
www.parametricism.co.uk

9

This type of learning algorithms use sample inputs matched desired output
values during the learning phase. The goal of this method is to shape to
ANN so to provide a close fit output when given an input.

By double-clicking on the component on the right the form below appears
where you can choose between three different learning algorithms:

Supervised training form and paramters you can set are shown here:

ANN - Supervised Learning

Learning Algorithm Activation Function
Back-propagation Sigmoid

Bipolar Sigmoid
Delta-Rule Threshold
Perceptron Threshold

Paramter Explanation
Neurons Number of neurons per layer
Layers Number of layers
Learning rate Coefficient for updating the old weights ac-

cording to the error.
Momentum Adds inertia to the change in weights

smoothing it down.
Sigmoid alpha value Coefficient for the exponential in the sig-

moid.
Max iterations Maximum number of iterations before auto-

matic stop.
Error threshold Error value under which the learning ends.
Prediction size Only for back-propagation for prediction.

It defines how many vector inputs to use for
learning.

Window size Only for back-propagation for prediction. It
defines how many output vectors to predict.

Figure 9
ANN Supervised Training

Table 3
Supervised training algo-
rithms and their activation
functions

Table 2
Activation functions for
supervised training

Figure 10
Supervised training Forms
for (a) Back-Propagation
and (b) Delta Rule and
Perceptron

www.parametricism.co.uk

Dodo
www.parametricism.co.uk

10

Figure 11
Decision boundary for a

cube which upper verteces
are in class 0 and the bot-

tom are in class 1

Delta Rule learning is one of the two threshold finders in Dodo’s ANN
along with Perceptrons Rule.
In the example below the 8 verteces of a cube are assigned to two groups:
group 0 above and group 1 below. The trained ANN finds the decision
boundary depicted as a grey plane which splits the decision space in two.
A sample point shown as a sphere changes colour according to the value
the ANN gives to its position. Finally in picture (c) a grid of 11x11x11 have
been sampled and only the points having calulated class of 1 have been
shown demostrating that they are respctful of the boundary surface.

Supervised Training - Delta Rule

In this example above the
NN is fed with a number
of points in the 2D space,
being part of three distinct
groups which leads to a 3D
solution space identified.
To represent the group to
which they are part of, a 3D
vector can be used having
for each dimension either
0 or 1. Moreover, in order
to have a better graphical
understanding, the vectors

are multiplied by 255 so to transform them into colors:

Figure 12
Decision boundaries are
represented by red lines.

They divide the specimen
domain in 7 areas of

which 3 of exclusive com-
petence of each cluster, 3

shared and the central one
unknown

{R,G,B}

{0,1,0}

{0,1,1}

{0,0,1}

{1,0,1}

{1,0,0}

{1,1,0}

{0,0,0}

Supervised Training - Perceptron

www.parametricism.co.uk

Dodo
www.parametricism.co.uk

11

Supervised Training - Aproximation

Supervised Training - Prediction

Supervised training can be used to make an ANN be able to predict values
of a series. In the example shown below 8 couples of number were used
and plotted in teal. In red it is shown the aproximating curve generated by
the ANN trained using back-propagation learning. The two curves neatly
superpose on the first part and diverge a bit on ending, but this behaviour
can change widely playing with the learning coefficients.

For prediction the procedure is the same as before but we feed the ANN
with one single series of number but making it use sub-series of 5 numbers
to predict the 6th and use the difference between the latter and the expected
value to rate the learning. In the example below 16 values from a cosine
have been used and in the picture underneath one can see how well the
ANN predicts the following 34 values without progressive increase of the
error.

Figure 14
Prediction of a sine in
the range [0; 5Pi] from a
series [0;Pi/2]

Figure 13
Aproximation of a
series by an ANN using
back-propagation as
supervised training

www.parametricism.co.uk

Dodo
www.parametricism.co.uk

12

ANN - Unsupervised Learning

The ANN is given sample inputs without expected results and it will
organize itself in order to find patterns in this series.
Two learning algorithms are implemented in Dodo:

Unsupervised learning form and parameter explanations are explained in
the following.

Figure 15
ANN Supervised Training Learning Algorithm Notes

Som
Elastic Network The neuron count needs to be a

perfect square since it is used to
produce a square network

Parameter Explanation
Learning rate Coefficient for updating the old weights ac-

cording to the error.
Momentum Adds inertia to the change in weights

smoothing it down.
Max weight Upper bound for neurons’ weights. The lower

bound is always 0 - rescale your inputs if this
does not suit your data.

Max iterations Maximum number of iterations before auto-
matic stop.

Neurons Number of neurons per layer.
Radius Radius within which each neuron compares

against the others.

Table 5
Paramters in Unsuper-

vised training with their
explanation

Table 4
Unsupervised training

algorithms

Figure 16
Unsupervised training

Forms

www.parametricism.co.uk

Dodo
www.parametricism.co.uk

13

Unsupervised Training - Elastic Network

Unsupervised training and elastic network can be used to find a solution to
the travelling salesman problem. The elastic network is initially brought to
the center of the data set, then slowly tries to replicate the values (position)
basically working as a dumped spring system. The resulting weights are
the euclidean distances between the data points and the neurons’ output
can be used how well the NN fit to the data samples. The neurons’ output
can then be used to see how similar another dataset is to the first one and
it is my understanding that this patter recognition strategies have been
successfully used to recognize cancer cells from pictures.

Figure 17
Minimum path between
specimen

www.parametricism.co.uk

Dodo
www.parametricism.co.uk

14

Unsupervised Training - Self Organizing Map

Table 6
Flow regime identification

accuracy (%) of different
machine learning algo-

rithms

[From wikipedia: https://en.wikipedia.org/wiki/Elastic_map]
The method of elastic maps has been systematically tested and compared
with several machine learning methods on the applied problem of
identification of the flow regime of a gas-liquid flow in a pipe. There are
various regimes: Single phase water or air flow, Bubbly flow, Bubbly-slug
flow, Slug flow, Slug-churn flow, Churn flow, Churn-annular flow, and
Annular flow. The simplest and most common method used to identify
the flow regime is visual observation. This approach is, however, subjective
and unsuitable for relatively high gas and liquid flow rates. Therefore, the
machine learning methods are proposed by many authors. The methods
are applied to differential pressure data collected during a calibration
process. The method of elastic maps provided a 2D map, where the area
of each regime is represented. The comparison with some other machine
learning methods is presented in Table 1 for various pipe diameters and
pressure.

Here, ANN stands for the backpropagation artificial neural networks, SVM
stands for the support vector machine, SOM for the self-organizing maps.
The hybrid technology was developed for engineering applications.[13]
In this technology, elastic maps are used in combination with Principal
Component Analysis (PCA), Independent Component Analysis (ICA)
and backpropagation ANN.

Algorithm Calibration Testing Larger diameter Higher pressure
Elastic map 100 98.2 100 100
ANN 99.1 89.2 76.2 70.5
SVM 100 88.5 61.7 70.5
SOM (small) 94.9 94.2 83.6 88.6
SOM (large) 100 94.6 82.1 84.1
SOM (large) 100 94.6 82.1 84.1

www.parametricism.co.uk

Dodo
www.parametricism.co.uk

15

www.parametricism.co.uk

Dodo
www.parametricism.co.uk

16

Finding the principal curvature of a continuous surface is relatively easy
and is part of the domain of differential geometry. Meshes are discrete and
therefore do not have continuous derivatives. Several papers have addressed
this issue and the solution given by Szymon was adopted in Dodo. The
paper also gives a very good look on the state of the art explaining pros and
cons of other methods.

The grasshopper component only needs the mesh as input and returns
the two principal directions - pointing toward increasing curvature - and
principal curvature values at the mesh’s vertices, whilst intermediate points
can be derived by weighted average.

The images show an isomesh for which curvature has been calculated and
the it has been integrated starting from points.

5. Mesh Tools

Paper from Szymon
Rusinkiewicz:

http://gfx.cs.princeton.edu/
pubs/_2004_ECA/index.

php

Figure 18
From top to bottom:
(a) Mesh Curvature,

(b) Convex Hull,
(c) Singular points

www.parametricism.co.uk

Dodo
www.parametricism.co.uk

17

Another useful tool consists in Geodesic on Mesh which exploits breadth-
first and the midpoint subdivision to find the shortest path between two
points.

There are more refined
strategies algorithms
to find geodesics on

meshes, but they applies
to triangular meshes only.

References can be found
in the end.

Figure 19
Color gradient showing
curvature (a), false colors
with principal directions
(b) and curvature integra-
tion from given points (c)

www.parametricism.co.uk

Dodo
www.parametricism.co.uk

18

KD-Tree is a method to store and search multidimensional data very fast
(although the speed decreases with the increase of dimensions), here’s the
wikipedia article.

Use component (a) to create an item of the dataset or component (b) to
deconstruct it. Then you can build a datree by collecting all the items in
component (c) and you are ready to search the dataset. Three type of search
are implemented now: nearest neighbours (d), points in a domain (e) and
points within a certain rectangular distance from a given source (f).

6. kd-Tree

Figure 20
From top to bottom:

(a) Construct HPoint,
(b) Deconstruct HPoint,

(c) Construct tree, (d)
Deconstruct HPoint,
(e) Closest points, (f)

HPoints within distance,
(g) HPoints in region

www.parametricism.co.uk
https://en.wikipedia.org/wiki/K-d_tree
https://en.wikipedia.org/wiki/K-d_tree

Dodo
www.parametricism.co.uk

19

Figure 21
On the opposite page:
(a) points within a given
distance from seed.
On this page top to bot-
tom: (b) 7 closest points,
(c) points within a region
of space.

www.parametricism.co.uk

Dodo
www.parametricism.co.uk

20

MathNet is the equivalent of numpy and scipy python libraries for .NET.
It implements linear algebra, Fourier transform, matrix manipulation and
decomposition, linear coefficients interpolation and solvers.

The utilization is pretty straightforward here the components only are
shown.

It’s worth mentioning that:
• Everything is computed using complex numbers so to allow a broader

range of operations.
• DVectors can be cast to/from HyperPoints for k-dtree search.
• DVectors can be cast to/from GH points, vectors, complex numbers and

matrices.

Among the additional mathematical utilities Dodo features:
• Linear and NL-Least Squares;
• Fourier transform;
• Matrix decomposition;

7. MathNet

External resources:

http://www.imagingshop.
com/linear-and-nonlinear-

least-squares-with-math-
net/

http://numerics.mathdot-
net.com/Regression.html

www.parametricism.co.uk

Dodo
www.parametricism.co.uk

21

www.parametricism.co.uk

Dodo
www.parametricism.co.uk

22

Dodo can generate graphs starting from lines, distances and weights, and
then find minimum paths be there topological or shortest time/space -wise

GREEN: Minimum topological path having distance = 3
BLUE: Shortest spatial path having compounded length = 57.3

8. Graph

Figure 22
From top to bottom:
(a) construct graph,

(b) Calculate topologi-
cal distances, (c) Show

distance for point

www.parametricism.co.uk

Dodo
www.parametricism.co.uk

23

www.parametricism.co.uk

Dodo
www.parametricism.co.uk

24

A few components to enrich the native Grasshopper ones.
1) generate a vector field from an image colors;
2) from a mesh curvature;
3) find the trajectory of an object in a field;
4) finds the field path using an object as constraint
5) create a vector field from a mathematical function
6) generate a continuous vector field from a discrete set of vectors in space

In the image above it is a comparison of a force path derived from a
continuous field (black) and paths derived from densely and less densely
sampled discrete fields (red and blue respectively).

9. Fields

Figure 23
From top to bottom:

(a) Field from image,
(b) Field from mesh, (c)
Point in vector field, (d)

Path constrained on a
surface, (e) Field from

expression, (f) Field from
vectors, (g) Field from

surface

www.parametricism.co.uk

Dodo
www.parametricism.co.uk

25

In the image below the same vector field is integrated using a cone as
constraint.

Figure 24
Force flow curves in a
field. The green path has
been constrained on a
conical surface.

www.parametricism.co.uk

Dodo
www.parametricism.co.uk

26

Convex 3D Hull
Creates a triangular mesh which is the smallest convex enclosure of a point
cloud.

Surface Curvature
This tool generates paths along the maximum curvature direction.

Banana
A dancing banana.

Run Executable
Runs an external exacutable and returns the return value.

Series from List.
Generates a list of numbers using the length of the given list.

Group Numbers.
Groups a series of numbers.

10. Other Tools

www.parametricism.co.uk

Dodo
www.parametricism.co.uk

27

www.parametricism.co.uk

Dodo
www.parametricism.co.uk

28

Non-Linear Optimization

The NL-optimization component inherits from GalapagosComponent
from David Rutten and is inspired by Goat from Simon Floery.

This plugin uses the .NET implementations of the famous NLOpt library
that you can find here: http://ab-initio.mit.edu/wiki/index.php/NLopt,
whilst the .NET implementation is here: https://github.com/roryclune/
NLOptDotNet.

Numerical Optimization - J. Nocedal

Artificial Neural Network

Artificial Intelligence MIT Open courseware
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-
034-artificial-intelligence-fall-2010/

The Neural Network .dll is from Andrew Kirillov and can be found here:
http://www.codeproject.com/Articles/16447/Neural-Networks-on-C.

Mesh Curvature

The Mesh curvature component uses the algorithm described by Szymon
Rusinkiewicz in the paper: Estimating Curvatures and Their Derivatives on
Triangle Meshes

Marching Cubes/Tetrahedra are based on the work of Paul Bourke: http://
paulbourke.net/geometry/polygonise/

Geodesics on Meshes

D. Martinez et al., Computing Geodesics on Triangular Meshes, 2005
V. Surazhsky et al, Fast Approximate Geodesics on Meshes

11. References

www.parametricism.co.uk
http://ab-initio.mit.edu/wiki/index.php/NLopt
https://github.com/roryclune/NLOptDotNet
https://github.com/roryclune/NLOptDotNet
http://www.codeproject.com/Articles/16447/Neural

Dodo
www.parametricism.co.uk

29

Computational Geometry

Mesh Parameterization: Theory and Practice, SIGGRAPH 2008.

www.parametricism.co.uk

